Q 5. A current of 1.5 A is flowing through a triangle, of side 9 cm each. The magnetic field at the centroid of the triangle is:

(Assume that the current is flowing in the clockwise direction.) [Aug. 31, 2021 (II)]

- (a) 3×10^{-7} T, outside the plane of triangle.
- (b) $2\sqrt{3} \times 10^{-7}$ T, outside the plane of triangle.
- (c) $2\sqrt{3} \times 10^{-5}$ T, inside the plane of triangle.
- (d) 3×10^{-5} T, inside the plane of triangle.

Ans

$$B = 3 \left[\frac{\mu_0 i}{4\pi d} (\sin 60^\circ + \sin 60^\circ) \right]$$

$$\tan 60^\circ = \frac{a/2}{d}$$
put $a = 9 \times 10^{-2} m$

$$\Rightarrow d = \frac{9 \times 10^{-2}}{2\sqrt{3}} m$$

$$B = 3 \times 10^{-5} T$$
.

 \vec{B} is into the plane of triangle.